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Integrability of cyclotron motion
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Effects of the polarization of the electric field upon the integrability of cyclotron motion are studied. It is
shown that relativistic cyclotron motion is integrable when the electric field is circularly polarized, but is not
when the electric field is linearly or elliptically polarized. The motion in nonrelativistic limit is regular regard-
less of the polarization of the electric field51063-651X97)08809-(

PACS numbg(s): 41.75-i, 03.20+i, 05.45:+b

I. INTRODUCTION i direction. We assume that the initial velocity hasziwom-
ponent and consider only a planar motion in the plane.
The dynamics of charged particles moving in electric andThe electric field in an arbitrary elliptically polarized state
magnetic fields is of great importance in accelerator physicssan be written as
plasma physics, and atomic and optical phys$it&]. The
guestion concerning the integrability of the motion of such
particles is not just of academic interest, because it is directly
related to the performance of such practical devices as the
cyclotron, tokamak, free-electron laser, and Penning trapVheré ¢=0 or = corresponds to linear polarization and
Recently, it has been found that some interesting nonlinea = * 7/2 to circular polarization. The scalar and vector po-
effects such as chaos and bistable hysterisis are exhibited figntialse andA can be taken to be
electrons in these devic§3—8], especially when relativistic
effects play a non-negligible rol@]. o= —xEqcoawt—yE cogwt+ ¢), 2
In this paper, we study the dynamics of relativistic and
nonrelativistic cyclotron motion in a mutually orthogonal B <B
uniform magnetic field and an oscillating electric field. We A=— ué + 2% (3)
address, in particular, the question of the integrability of cy- 2 27
clotron motion in relation to the polarization of the electric
field. This study is motivated by two recent theoretical re-Here and throughout the paper Gaussian units are used.
ports; Kim and Led 10] have shown that chaotic cyclotron
motion occurs when the electric field is linearly polarized,
while Bourdieret al.[11] have shown that the cyclotron mo-
tion is integrable when the electric field is circularly polar-  Let us first consider the motion in the nonrelativistic limit.

E=Eqcosvte,+Eqcogwi+ ¢)e,, D

A. Nonrelativistic cyclotron motion

ized. The Lagrangian is given by
Theoretical analysis of the cyclotron motion can often be 1
carried out most effectively if a canonical transformation to L= m(x2+y2)+ (xy yx)+quxc03Nt

an appropriate rotating frame of reference is performed. For
a discussion of nonrelativistic cyclotron motion, it helps
greatly to look at the motion in the frame rotating at the
Larmor frequency. No such convenient frame exists when
the motion becomes relativistic, except when the motion ocEduation(4) can be written, in terms of cylindrical coordi-
curs in a circularly polarized electric field, in which case annates, as

analysis can be performed conveniently in the frame rotating

+qEgycogwt+ ¢). (4)

with the electric field. Our proof of the integrability of the o oo OBg .

motion for the case of a circularly polarized electric field is L=Zm(ro+r°6%)+ 5 -r°6+qEercosscoswt

thus given based on an analysis performed in this rotating

frame and seems to be simpler and physically more transpar- +qEgrsindcogwt+ ¢). 5)

ent than the proof given by Bourdiet al. [11].
In the frame rotatingclockwise ifq>0) at the Larmor fre-

Il. THEORY quency
We consider a particle of mass and chargeg moving gBg
under the influence of a uniform magnetic fidd Boe, and ~2mc’ )

a time-periodic electric field assumed to be orthogonal to
B. From here on the vect@ denotes a unit vector along the the Lagrangian takes a simple form and is given by
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1. . 1 $2 12
T2 2p2 T2 _ [ Xty® aBy . .
L 2m(r +r6°) 2mQ r<+qEyrcoq 8—Qt)coswt L=—mcd\/1— = +%(Xy—yx)+quxcos/vt

+qEgrsin(6— Qt)cogwt+ ¢), (7)

+qEgysinwt. (13

where the primes indicating the rotating frame have beerTransforming to the frame rotating counterclockwise at fre-
dropped. Returning to Cartesian coordinates, Ef). be- quencyw, we have

comes

1. . . .
1 .. . 1 =_ T2 U2 w2 (w242 _
L=§m(x2+y2)—§m92(x2+y2) L mcz\/l C2[x Y2+ W2(x2+y?) + 2w(xy—yX)]
+qEgx[ cod)tcosvt— sinQtcog wt+ ¢) ] 9Bo o .o 9Bo o
aFo ¢ T 5o WOCHY) + 5 2 (Y= Y30 +QEoX, (19
+qEgy[ sinQQtcosvt+coddtcogwt+ )],  (8)

where again the primes have been dropped. The generalized
which immediately yields the equations of motion momenta can immediately be obtained as

mx+mQ2x= qE[ costcoswt—sinQtcogwt+ ¢)], . mx—mwy
9 X~

\/1— iz[k2+y2+wz(x2+y2)+ 2w(xy—yx)]
my+mQ2y=qE,[ sintcosvt+ coddtcogwt+ ¢)]. ¢
(10 qBo
- Ey! (15)
Equations(9) and (10) indicate that, when viewed in the
frame rotating at the Larmor frequency, the motion being
considered appears as driven harmonic oscillations irxthe p,=
andy directions, respectively, with the frequency of the driv- y 1 .. _ _
ing force given byw = (). The motion viewed in this rotating \/1— —2[x2+y2+wz(x2+y2)+ 2w(Xy—yXx)]
frame is thus regular regardless of the polarization of the c
electric field and so is the motion in the laboratory frame. B,

+ %X (16)

my+ mwx

B. Relativistic cyclotron motion

We now wish to consider the case when the motion is@nd the Hamiltonian as
relativistic. What complicates the matter in the relativistic

. 2 2
case is the fact that the angular frequency of a charged par- H \/m2c4+ 0 +Q_Boy 2+ p —q—BOx )
ticle in the presence of a uniform magnetic fi@g is given X 2¢ Y 2c
by
—W(XPy—YPx) —qEpX. (17)
0B 11
"~ 2ymc (12) One notes from Eq(17) that, in this rotating frame, the

Hamiltonian is time independent and thus is a constant of
otion.

In order to find the second constant of motion, we first
rite Hamilton’s equations of motion

and is no longer constant; it depends on the velocity of thd"
particle through the quantity=1/\/1—v?/c?. The frame of
reference rotating at a constant Larmor frequency no Ionge‘fy
exists. If, however, the electric field is circularly polarized,

one can choose to view the motion in the frame rotating at D+ q_BO c2
the frequency of the field. In this frame, the electric field will dx X 2c
appear as a stationary field and one might hope to get a dt A twy, (18)
simple picture of the motion at least for the case of a circu-
larly polarized electric field. qB

With the above argument in mind, we proceed to consider ( py— _OX) c?
relativistic cyclotron motion when the field is circularly po- d_y: 2¢c —Wx (19
larized, i.e., when dt A '

E=Eqcosvte,+ Eosinwte,. (12) ( B Q_Box) qBoec
dpy Py~ ¢ 2

The Lagrangian can be written as dt A +wpytqEo, (20
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, 9Bo, 19BoC
dp, P 2cY) 2

dt A

— WDy, (21)

where

A=A(X,Y,Px,Py)

= \/m2c4+

From Egs.(18)—(21) we obtain

d( aBo |
at P2 Y)W

d aBo | aBo
a( py+ EX)——W( Px— Ey . (24)

0By
Px+ TS

aBy
py+ 2_CX

+ q E01 (23)

Equations(23) and (24) immediately yield
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have also performed numerical computation for the case
when the electric field is elliptically polarized and observed
chaotic behavior. The threshold field at which the onset of
chaos occurs increases as the anfyis increased from zero
(linear polarizatioh toward /2 (circular polarization Fur-
ther details will be described elsewhere.

C. Cyclotron motion in two electric fields

One may also ask about the integrability of the cyclotron
motion when a second oscillating electric field, in addition to
the uniform magnetic field and oscillating electric field, is
present. In the nonrelativistic regime, it can easily be shown
that the addition of a second electric field does not alter the
qualitative nature of the motion. Regardless of the polariza-
tion, frequency, and phase of the second field, the motion in
the frame rotating at the Larmor frequency appears still as
driven harmonic oscillations; only the number of the driving
terms doubles. The matter is not that simple in the relativistic
regime. Consider the motion in the presence of a uniform
magnetic field and two circularly polarized electric fields
with the second electric field given by

1d[( By | qBo_|? E'=Ejcogw't+ 0)e+Efsinw't+6)e,, (29
5 g | Px— 5 Y Pyt 5 X Y
2 dt 2c Y 2c
where 6 represents the phase difference between the two
q_Eoi D q_BOX electric fields. Unless the frequencies of the two electric
w dt\"™Y 2c fields are equal, it is not possible to find a rotating frame in
~0 25 which the Hamiltonian is time independent. It therefore ap-

The constant of motion can thus be taken as

pears unlikely that relativistic cyclotron motion in the pres-
ence of two or more electric fields is integrable. A definite
statement about nonintegrability in this case, however, can

1 9B, |2 qB, |2 be made only after further computation and analysis are per-
C:ﬁHpX_E +| pyt Ex formed.
E B Ill. SUMMARY AND DISCUSSION
+ b( Py Hx ) (26)
mw 2c

It can be shown by straightforward algebra t@aandH are

in involution, i.e., that the Poisson bracKet,H] vanishes.
We can thus conclude that relativistic cyclotron motion for
the case of a circularly polarized electric field is integrable in
this rotating frame and so is the motion in the laborator

frame. It should be mentioned here that the quar@itand
the nonrelativistic version dfl given by

Yy

We have shown that nonrelativistic cyclotron motion is
regular regardless of the polarization and the number of the
electric fields, while relativistic cyclotron motion is inte-
grable probably only when there is one circularly polarized
electric field. For the case of a circularly polarized electric
field, the motion is essentially equivalent to that in the pres-
ence of static electric and magnetic fields, when viewed in
the frame rotating at the frequency of the electric field. If the
electric field is not circularly polarized, however, the electric

1 B, \2 1 qB, |2 field is still time dependent in that rotating frame and, for
H=—pyt 5=VY| t 5= py— 5—X that matter, in any other rotating frame. Nevertheless, if the
2m 2c 2m\"Y  2c¢ i . oo .

motion remains nonrelativistic, it is advantageous to consider
—W(XP,—YPx) — GEoX (27)  the motion in the frame rotating at Larmor frequency. In this

rotating frame, the electric field is still time dependent, but

are also constants of motion for the case when the cyclotrothe motion appears simply as driven harmonic oscillations. If
motion is nonrelativistic and the electric field is circularly the motion is relativistic, however, the precessing frequency
polarized. of a charged particle in a uniform magnetic field is no longer
It should be noted that only a circularly polarized electric constant. It is not possible to find a rotating frame in which
field appears as stationary in the frame rotating at frequencghe motion looks “simple,” except of course when the field
w. For all other polarizations, the Hamiltonian in this rotat- is circularly polarized.
ing frame is still time dependent and apparently the particle It is evident that integrability of the cyclotron motion can
motion is nonintegrable as long as relativistic effects arebe proved most readily if an appropriate rotating frame of
taken into account. It has already been shown through nueference is found. From a fundamental viewpoint, such
merical computation that the particle can display chaotic beproof is valid because the transformation to a rotating frame
havior when the electric field is linearly polarizgtl0]. We  of reference is canonical. We also mention in passing that
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our treatment of the cyclotron motion is approximate be-cyclotron motion being considered here, while the cyclotron

cause the wave nature of the charged particles is not consid@iotion can exhibit chaos only when the motion becomes

ered. relativistic and occurs in a noncircularly polarized electric
Finally, it should be mentioned that the question concernfield, the electron motion in the hydrogen is nonintegrable

ing the effect of the polarization of the electric field upon theajready in the nonrelativistic regime for any polarization. Yet

dynamics of charged particles is of much current interest int js interesting to note that, in either case, a circularly polar-

the field of nonlinear dynamics, especially in studies of mul-ized electric field provides a condition more strongly resis-

tiphoton ionization of the hydrogen atom. The classical Mo+ant to nonintegrability and chaos.

tion of the electron in the hydrogen in the presence of an

oscillating electric field is nonintegrable, even if relativistic

effects are neglected, regardless of the polarization of the ACKNOWLEDGMENTS
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