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Integrability of cyclotron motion
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Department of Physics, Korea Advanced Institute of Science and Technology, Taejon, 305-701, Korea
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Effects of the polarization of the electric field upon the integrability of cyclotron motion are studied. It is
shown that relativistic cyclotron motion is integrable when the electric field is circularly polarized, but is not
when the electric field is linearly or elliptically polarized. The motion in nonrelativistic limit is regular regard-
less of the polarization of the electric field.@S1063-651X~97!08809-0#

PACS number~s!: 41.75.2i, 03.20.1i, 05.45.1b
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I. INTRODUCTION

The dynamics of charged particles moving in electric a
magnetic fields is of great importance in accelerator phys
plasma physics, and atomic and optical physics@1,2#. The
question concerning the integrability of the motion of su
particles is not just of academic interest, because it is dire
related to the performance of such practical devices as
cyclotron, tokamak, free-electron laser, and Penning t
Recently, it has been found that some interesting nonlin
effects such as chaos and bistable hysterisis are exhibite
electrons in these devices@3–8#, especially when relativistic
effects play a non-negligible role@9#.

In this paper, we study the dynamics of relativistic a
nonrelativistic cyclotron motion in a mutually orthogon
uniform magnetic field and an oscillating electric field. W
address, in particular, the question of the integrability of
clotron motion in relation to the polarization of the electr
field. This study is motivated by two recent theoretical
ports; Kim and Lee@10# have shown that chaotic cyclotro
motion occurs when the electric field is linearly polarize
while Bourdieret al. @11# have shown that the cyclotron mo
tion is integrable when the electric field is circularly pola
ized.

Theoretical analysis of the cyclotron motion can often
carried out most effectively if a canonical transformation
an appropriate rotating frame of reference is performed.
a discussion of nonrelativistic cyclotron motion, it hel
greatly to look at the motion in the frame rotating at t
Larmor frequency. No such convenient frame exists wh
the motion becomes relativistic, except when the motion
curs in a circularly polarized electric field, in which case
analysis can be performed conveniently in the frame rota
with the electric field. Our proof of the integrability of th
motion for the case of a circularly polarized electric field
thus given based on an analysis performed in this rota
frame and seems to be simpler and physically more trans
ent than the proof given by Bourdieret al. @11#.

II. THEORY

We consider a particle of massm and chargeq moving
under the influence of a uniform magnetic fieldBW 5B0êz and
a time-periodic electric fieldEW assumed to be orthogonal t
BW . From here on the vectorêi denotes a unit vector along th
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i direction. We assume that the initial velocity has noz com-
ponent and consider only a planar motion in thexy plane.
The electric field in an arbitrary elliptically polarized sta
can be written as

EW 5E0coswtêx1E0cos~wt1f!êy, ~1!

wheref50 or 6p corresponds to linear polarization an
f56p/2 to circular polarization. The scalar and vector p
tentialsw andAW can be taken to be

w52xE0coswt2yE0cos~wt1f!, ~2!

AW 52
yB0

2
êx1

xB0

2
êy. ~3!

Here and throughout the paper Gaussian units are used

A. Nonrelativistic cyclotron motion

Let us first consider the motion in the nonrelativistic lim
The Lagrangian is given by

L5
1

2
m~ ẋ21 ẏ2!1

qB0

2c
~xẏ2yẋ!1qE0xcoswt

1qE0ycos~wt1f!. ~4!

Equation~4! can be written, in terms of cylindrical coordi
nates, as

L5
1

2
m~ ṙ 21r 2u̇2!1

qB0

2c
r 2u̇1qE0rcosucoswt

1qE0rsinucos~wt1f!. ~5!

In the frame rotating~clockwise if q.0) at the Larmor fre-
quency

V5
qB0

2mc
, ~6!

the Lagrangian takes a simple form and is given by
3602 © 1997 The American Physical Society
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L5
1

2
m~ ṙ 21r 2u̇2!2

1

2
mV2r 21qE0rcos~u2Vt !coswt

1qE0rsin~u2Vt !cos~wt1f!, ~7!

where the primes indicating the rotating frame have b
dropped. Returning to Cartesian coordinates, Eq.~7! be-
comes

L5
1

2
m~ ẋ21 ẏ2!2

1

2
mV2~x21y2!

1qE0x@cosVtcoswt2sinVtcos~wt1f!#

1qE0y@sinVtcoswt1cosVtcos~wt1f!#, ~8!

which immediately yields the equations of motion

mẍ1mV2x5qE0@cosVtcoswt2sinVtcos~wt1f!#,
~9!

mÿ1mV2y5qE0@sinVtcoswt1cosVtcos~wt1f!#.
~10!

Equations~9! and ~10! indicate that, when viewed in th
frame rotating at the Larmor frequency, the motion be
considered appears as driven harmonic oscillations in thx
andy directions, respectively, with the frequency of the dr
ing force given byw6V. The motion viewed in this rotating
frame is thus regular regardless of the polarization of
electric field and so is the motion in the laboratory frame

B. Relativistic cyclotron motion

We now wish to consider the case when the motion
relativistic. What complicates the matter in the relativis
case is the fact that the angular frequency of a charged
ticle in the presence of a uniform magnetic fieldB0 is given
by

V5
qB0

2gmc
~11!

and is no longer constant; it depends on the velocity of
particle through the quantityg51/A12v2/c2. The frame of
reference rotating at a constant Larmor frequency no lon
exists. If, however, the electric field is circularly polarize
one can choose to view the motion in the frame rotating
the frequency of the field. In this frame, the electric field w
appear as a stationary field and one might hope to g
simple picture of the motion at least for the case of a cir
larly polarized electric field.

With the above argument in mind, we proceed to consi
relativistic cyclotron motion when the field is circularly po
larized, i.e., when

EW 5E0coswtêx1E0sinwtêy. ~12!

The Lagrangian can be written as
n

g

e

s

r-

e

er

t

a
-

r

L52mc2A12
ẋ21 ẏ2

c2
1

qB0

2c
~xẏ2yẋ!1qE0xcoswt

1qE0ysinwt. ~13!

Transforming to the frame rotating counterclockwise at f
quencyw, we have

L52mc2A12
1

c2
@ ẋ21 ẏ21w2~x21y2!12w~xẏ2yẋ!#

1
qB0

2c
w~x21y2!1

qB0

2c
~xẏ2yẋ!1qE0x, ~14!

where again the primes have been dropped. The genera
momenta can immediately be obtained as

px5
mẋ2mwy

A12
1

c2
@ ẋ21 ẏ21w2~x21y2!12w~xẏ2yẋ!#

2
qB0

2c
y, ~15!

py5
mẏ1mwx

A12
1

c2
@ ẋ21 ẏ21w2~x21y2!12w~xẏ2yẋ!#

1
qB0

2c
x ~16!

and the Hamiltonian as

H5Am2c41S px1
qB0

2c
yD 2

c21S py2
qB0

2c
xD 2

c2

2w~xpy2ypx!2qE0x. ~17!

One notes from Eq.~17! that, in this rotating frame, the
Hamiltonian is time independent and thus is a constan
motion.

In order to find the second constant of motion, we fi
write Hamilton’s equations of motion

dx

dt
5

S px1
qB0

2c
yD c2

A
1wy, ~18!

dy

dt
5

S py2
qB0

2c
xD c2

A
2wx, ~19!

dpx

dt
5

S py2
qB0

2c
xDqB0c

2

A
1wpy1qE0, ~20!
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dpy

dt
52

S px1
qB0

2c
yDqB0c

2

A
2wpx, ~21!

where

A5A~x,y,px ,py!

5Am2c41S px1
qB0

2c
yD 2

c21S py2
qB0

2c
xD 2

c2.

~22!

From Eqs.~18!–~21! we obtain

d

dtS px2
qB0

2c
yD5wS py1

qB0

2c
xD1qE0, ~23!

d

dtS py1
qB0

2c
xD52wS px2

qB0

2c
yD . ~24!

Equations~23! and ~24! immediately yield

1

2

d

dtF S px2
qB0

2c
yD 2

1S py1
qB0

2c
xD 2G

1
qE0

w

d

dtS py1
qB0

2c
xD

50. ~25!

The constant of motion can thus be taken as

C5
1

2mF S px2
qB0

2c
yD 2

1S py1
qB0

2c
xD 2G

1
qE0

mwS py1
qB0

2c
xD . ~26!

It can be shown by straightforward algebra thatC andH are
in involution, i.e., that the Poisson bracket@C,H# vanishes.
We can thus conclude that relativistic cyclotron motion
the case of a circularly polarized electric field is integrable
this rotating frame and so is the motion in the laborato
frame. It should be mentioned here that the quantityC and
the nonrelativistic version ofH given by

H5
1

2mS px1
qB0

2c
yD 2

1
1

2mS py2
qB0

2c
xD 2

2w~xpy2ypx!2qE0x ~27!

are also constants of motion for the case when the cyclo
motion is nonrelativistic and the electric field is circular
polarized.

It should be noted that only a circularly polarized elect
field appears as stationary in the frame rotating at freque
w. For all other polarizations, the Hamiltonian in this rota
ing frame is still time dependent and apparently the part
motion is nonintegrable as long as relativistic effects
taken into account. It has already been shown through
merical computation that the particle can display chaotic
havior when the electric field is linearly polarized@10#. We
r

y

n

cy
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e
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-

have also performed numerical computation for the c
when the electric field is elliptically polarized and observ
chaotic behavior. The threshold field at which the onset
chaos occurs increases as the anglef is increased from zero
~linear polarization! towardp/2 ~circular polarization!. Fur-
ther details will be described elsewhere.

C. Cyclotron motion in two electric fields

One may also ask about the integrability of the cyclotr
motion when a second oscillating electric field, in addition
the uniform magnetic field and oscillating electric field,
present. In the nonrelativistic regime, it can easily be sho
that the addition of a second electric field does not alter
qualitative nature of the motion. Regardless of the polari
tion, frequency, and phase of the second field, the motio
the frame rotating at the Larmor frequency appears still
driven harmonic oscillations; only the number of the drivin
terms doubles. The matter is not that simple in the relativis
regime. Consider the motion in the presence of a unifo
magnetic field and two circularly polarized electric field
with the second electric field given by

E8W5E08cos~w8t1u!êx1E08sin~w8t1u!êy, ~28!

where u represents the phase difference between the
electric fields. Unless the frequencies of the two elec
fields are equal, it is not possible to find a rotating frame
which the Hamiltonian is time independent. It therefore a
pears unlikely that relativistic cyclotron motion in the pre
ence of two or more electric fields is integrable. A defin
statement about nonintegrability in this case, however,
be made only after further computation and analysis are
formed.

III. SUMMARY AND DISCUSSION

We have shown that nonrelativistic cyclotron motion
regular regardless of the polarization and the number of
electric fields, while relativistic cyclotron motion is inte
grable probably only when there is one circularly polariz
electric field. For the case of a circularly polarized elect
field, the motion is essentially equivalent to that in the pr
ence of static electric and magnetic fields, when viewed
the frame rotating at the frequency of the electric field. If t
electric field is not circularly polarized, however, the elect
field is still time dependent in that rotating frame and, f
that matter, in any other rotating frame. Nevertheless, if
motion remains nonrelativistic, it is advantageous to consi
the motion in the frame rotating at Larmor frequency. In th
rotating frame, the electric field is still time dependent, b
the motion appears simply as driven harmonic oscillations
the motion is relativistic, however, the precessing freque
of a charged particle in a uniform magnetic field is no long
constant. It is not possible to find a rotating frame in whi
the motion looks ‘‘simple,’’ except of course when the fie
is circularly polarized.

It is evident that integrability of the cyclotron motion ca
be proved most readily if an appropriate rotating frame
reference is found. From a fundamental viewpoint, su
proof is valid because the transformation to a rotating fra
of reference is canonical. We also mention in passing t
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56 3605INTEGRABILITY OF CYCLOTRON MOTION
our treatment of the cyclotron motion is approximate b
cause the wave nature of the charged particles is not con
ered.

Finally, it should be mentioned that the question conce
ing the effect of the polarization of the electric field upon t
dynamics of charged particles is of much current interes
the field of nonlinear dynamics, especially in studies of m
tiphoton ionization of the hydrogen atom. The classical m
tion of the electron in the hydrogen in the presence of
oscillating electric field is nonintegrable, even if relativist
effects are neglected, regardless of the polarization of
field. It has been observed, however, that the critical fi
above which the electron displays chaotic behavior and
which ionization begins to take place is higher when the fi
is circularly polarized than when it is linearly polarized@12–
15#. Comparing the electron motion in the hydrogen and
.
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cyclotron motion being considered here, while the cyclotr
motion can exhibit chaos only when the motion becom
relativistic and occurs in a noncircularly polarized elect
field, the electron motion in the hydrogen is nonintegra
already in the nonrelativistic regime for any polarization. Y
it is interesting to note that, in either case, a circularly pol
ized electric field provides a condition more strongly res
tant to nonintegrability and chaos.
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